ROLL No.

H - 2016

II SEMESTER EXAMINATION, 2014

M. Sc.

MATHEMATICS

Paper IV

[Advanced Complex Analysis-II]

Time: Three Hours]

[M. M. : 80

Note: Attempt any two parts from each question. All questions carry equal marks. http://www.a2zsubjects.com

1. (a) For $z \neq 0, -1, -2, \dots$ prove that

$$(z) = \lim_{n \to \infty} \frac{\lfloor n \mid n^z}{z (z+1) \dots (z+n)}$$

- (b) State and prove Mittag-Leffler's theorem.
- (c) Let $S = \{z : \text{Re } z \ge a\}$ where a > 1. Then for a given $\epsilon > 0$, $\exists \delta 0 < \delta < 1$ such that for all $z \in \delta$ prove that $\left| \int_{\alpha}^{\beta} (e^t 1)^{-1} t^{z-1} dt \right| < \epsilon$ where $\delta > \beta > \alpha$.

P. T. O.

[2]

UNIT - II

- (a) State and prove Schwarz's Reflexion Principle for symmetric region.
 - (b) Let v: [0, 1] → C be a path from a to b and let
 {(f_t, D_t): 0 ≤ t ≤ 1} and {(g_t, B_t): 0 ≤ t ≤ 1} be analytic continuations along v such that [f₀]_a = [g₀]_a. Then prove that [f₁]_b = [g₁]_b.
 - (c) Show that when 0 < b < 1, the series

$$\frac{1}{2}\log(1+b^2) + i\tan^{-1}b + \frac{z-ib}{1+ib} - \frac{1}{2}\frac{(z-ib)^2}{(1+ib)^2} + \dots$$
 is analytic continuation of the function defined by the series

$$z - \frac{1}{2}z^2 + \frac{1}{3}z^3 - \frac{1}{4}z^4 + \dots$$

- 3. (a) Let G be a region and let u be a continuous real valued function on G with the MVP. If there is a point a in G such that $u(a) \ge u(z)$ for all z in G, then prove that u is a constant function.
 - (b) State and prove Harnack's inequality.
 - (c) Let $u: G \to \Re$ be a continuous function which has the mean value property. Then prove that u is harmonic.

H-2016

http://www.a2zsubjects.com

[3]

UNIT - IV

- 4. (a) State and prove Jensen's formula.
 - (b) State and prove Borel's theorem.
 - (c) State and prove Hadamard's factorization theorem.

UNIT - V

- 5. (a) State and prove Schottky's theorem.
 - (b) State and prove Montel caratheodory theorem.
 - (c) Let f be analytic in D = $\{z : |z| < 1\}$ and let f(0) = 0, f(0) = 1 and $|f(z)| \le M$ for all z in D. Then prove that $M \ge 1$ and $f(D) \supset B\left(0; \frac{1}{6M}\right)$.

___ A ___