E-3825

M. Sc./M. A. (Previous)
 EXAMINATION, 2021
 MATHEMATICS
 Paper Fifth
 (Advance Discrete Mathematics)

Time : Three Hours]
[Maximum Marks : 100
Note : Attempt any two parts from each question. All questions carry equal marks.

1. (a) Define quantifier and predicate with examples.
(b) What do you mean by valid? Test the validity of the following argument:
"If it rains then it will be cold. If it is cold then I shall stay at home. Since it rains therefore I shall stay at home."
(c) Define semigroup homomorphism and monoid homomorphism. Let $(\mathrm{S}, *)$ be a semigroup and R be a congruence relation on ($\mathrm{S},{ }^{*}$). The quotient set S / R is a semigroup $(\mathrm{S} / \mathrm{R}, \oplus)$, where the operation \oplus corresponds to the operation * on S. Also, there exists a homomorphism from $\left(\mathrm{S},{ }^{*}\right)$ onto $(\mathrm{S} / \mathrm{R}, \oplus)$ called the natural homomorphism.
2. (a) Let (L, \leq) be a lattice. Then the following results hold :
(i) $(a \wedge b) \wedge c=a \wedge(b \wedge c)$
(ii) $\quad a \vee(a \wedge b)=a$
(b) Two bounded lattices L_{1} and L_{2} are complemented iff $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is complemented.
(c) Replace the switching function :

$$
\mathrm{F}(x, y, z)=x \cdot y \cdot z+x \cdot y^{\prime} \cdot z+x^{\prime} \cdot y^{\prime} \cdot z
$$

by a simpler switching circuit and verify the equivalent circuits by truth tables.
3. (a) Let G be a simple graph with n vertices. If G has k components, then the maximum number of edges that G can have is $\frac{(n-k)(n-k+1)}{2}$.
(b) The necessary and sufficient condition for a connected graph G to be a Euler graph is that 'all vertices of G are of even degree'.
(c) State the Kruskal's algorithm. Find the minimal spanning tree for the graph in figure using both Kruskal and Prim's method :

4. (a) Find π_{0}, π_{1} and π_{2} for the following finite state machine :

State	Input		Output
	0	1	
$\Rightarrow \mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{5}$	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{5}$	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{0}$	0
$\mathrm{~S}_{3}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{1}$	0
$\mathrm{~S}_{4}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{6}$	0
$\mathrm{~S}_{5}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{2}$	1
$\mathrm{~S}_{6}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	1
$\mathrm{~S}_{7}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$	1

(b) Describe Moore and Mealy machines with examples.
(c) Show that the two finite state machines shown in the following tables are equivalent :
(i)

State	Input		Output
	1	2	
$\Rightarrow \mathrm{~A}$	B	C	0
B	B	D	0
C	A	E	0
D	B	E	0
E	F	E	0
F	A	D	1
G	B	C	1

P. T. 0.
(ii)

State	Input		Output
	1	2	
\Rightarrow A	H	C	0
B	G	B	0
C	A	B	0
D	D	C	0
E	H	B	0
F	D	E	1
G	H	C	1
H	A	E	0

5. (a) State and prove Pumping Lemma.
(b) Construct a grammar for the language $\mathrm{L}=\left\{a^{x} b^{y}: x>y>0\right\}$.
(c) Consider the context free grammar G, that consists of the following productions :
$\mathrm{S} \rightarrow a \mathrm{~B} / b \mathrm{~A}$
$\mathrm{A} \rightarrow a / a \mathrm{~S} / b \mathrm{AA}$
$\mathrm{B} \rightarrow b / b \mathrm{~S} / a \mathrm{BB}$
For the string $a a b b a b a b$, find :
(i) Leftmost derivation
(ii) Rightmost derivation
(iii) Parse tree
