Roll 3	No.	•••••
--------	-----	-------

E - 3825

M. Sc./M. A. (Previous) EXAMINATION, 2021

MATHEMATICS

Paper Fifth

(Advance Discrete Mathematics)

Time: Three Hours] [Maximum Marks: 100

Note: Attempt any *two* parts from each question. All questions carry equal marks.

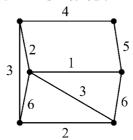
- 1. (a) Define quantifier and predicate with examples.
 - (b) What do you mean by valid? Test the validity of the following argument:
 - "If it rains then it will be cold. If it is cold then I shall stay at home. Since it rains therefore I shall stay at home."
 - (c) Define semigroup homomorphism and monoid homomorphism. Let (S, *) be a semigroup and R be a congruence relation on (S, *). The quotient set S/R is a semigroup $(S/R, \oplus)$, where the operation \oplus corresponds to the operation * on S. Also, there exists a homomorphism from (S, *) onto $(S/R, \oplus)$ called the natural homomorphism.

- 2. (a) Let (L, \leq) be a lattice. Then the following results hold:
 - (i) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$
 - (ii) $a \lor (a \land b) = a$
 - (b) Two bounded lattices L_1 and L_2 are complemented iff $L_1 \times L_2$ is complemented.
 - (c) Replace the switching function:

$$F(x, y, z) = x \cdot y \cdot z + x \cdot y' \cdot z + x' \cdot y' \cdot z$$

by a simpler switching circuit and verify the equivalent circuits by truth tables.

- 3. (a) Let G be a simple graph with n vertices. If G has k components, then the maximum number of edges that G can have is $\frac{(n-k)(n-k+1)}{2}$.
 - (b) The necessary and sufficient condition for a connected graph G to be a Euler graph is that 'all vertices of G are of even degree'.
 - (c) State the Kruskal's algorithm. Find the minimal spanning tree for the graph in figure using both Kruskal and Prim's method:



4. (a) Find π_0, π_1 and π_2 for the following finite state machine:

State	Inp	Outnut	
	0	1	Output
\Rightarrow S ₀	S_1	S_5	0
S_1	S_0	S_5	0
S_2	S_6	S_0	0
S_3	S_7	S_1	0
S_4	S_0	S_6	0
S_5	S_7	S_2	1
S_6	S_0	S_3	1
S_7	S_0	S_2	1

- (b) Describe Moore and Mealy machines with examples.
- (c) Show that the two finite state machines shown in the following tables are equivalent:

(i)

State	Inp	Outnut	
	1	2	Output
\Rightarrow A	В	С	0
В	В	D	0
С	A	Е	0
D	В	Е	0
Е	F	Е	0
F	A	D	1
G	В	С	1

(ii)

State	Inp	Outnut	
	1	2	Output
⇒ A	Н	С	0
В	G	В	0
С	A	В	0
D	D	С	0
Е	Н	В	0
F	D	Е	1
G	Н	С	1
Н	A	Е	0

- 5. (a) State and prove Pumping Lemma.
 - (b) Construct a grammar for the language $L = \{a^x b^y : x > y > 0\} \, .$
 - (c) Consider the context free grammar G, that consists of the following productions:

$$S \rightarrow aB/bA$$

$$A \rightarrow a/aS/bAA$$

$$B \rightarrow b/bS/aBB$$

For the string aa bb ab ab, find:

- (i) Leftmost derivation
- (ii) Rightmost derivation
- (iii) Parse tree