Roll No.

Z-312

M. A./M. Sc. (First Semester) **EXAMINATION, Dec., 2015**

MATHEMATICS

Paper Fourth

(Complex Analysis—I)

Time: Three Hours

[Maximum Marks: 80

[Minimum Pass Marks: 16

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit--I

- 1. (a) State and prove Cauchy's Integral formula.
 - Prove that: (b)

$$\log(1-z) = (z-1) - \frac{(z-1)^2}{2} + \frac{(z-1)^3}{3} + \dots$$

$$+ (-1)^n \frac{(z-1)^n}{n} + \dots$$

$$+(-1)^n\frac{(z-1)^n}{n}+.....$$

State and prove Liouville's theorem. (c)

Unit-II

2. (a) Every polynomial of degree n has n zeros.

- (b) Use Rouche's theorem to show that the equation $z^5 + 15z + 1 = 0$ has one root in the disc $|z| < \frac{3}{2}$ and four roots in the annulus $\frac{3}{2} < |z| < 2$.
- (c) State and prove Schwarz lemma.

3. (a) Show that :

$$\int_0^{2\pi} \frac{d\theta}{a + b \cos \theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}, \ a > b > 0$$

(b) Apply the calculus of residue, to prove that:

$$\int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}$$

(c) Use the method of contour integration to prove that:

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Unit—IV

- (a) To determine the bilinear transformation which transform three distinct points into three specified distinct points.
 - (b) To find all the bilinear transformation which maps the half plane I(z)≥0 onto the unit circular disc | w | ≤ 1.
 - (c) Discuss the application of the transformation $w = z^2$ to the area in the first quadrant of the z-plane bounded by the axes and circles:

$$|z| = a, |z| = b, (a > b > 0).$$

٠

Unit-V

- 5. (a) State and prove Weierstrass's theorem.
 - (b) State and prove Hurwitz's theorem.
 - (c) State and prove open mapping theorem.

ALLS HANN SALIS HOLD SECTION OF THE SALIS HAND SECTION OF THE SALIS HA

Z-312

900