Roll No.

Z - 311

M. A./M. Sc. (First Semester) EXAMINATION, Dec., 2015

MATHEMATICS

Paper Third

(Topology-I)

Time: Thise Hours]

[Maximum Marks : 80

Note: Attempt two parts from each Unit. All questions carry equal marks.

"Unit---I

- 1. (a) (i) Write short notes on the following:
 - (A) Countable set
 - (B) Cardinal number
 - (C) Prove that N × N is countable.
 - (b) (i) If (X, T) is a topological space and A, B ⊂ X, then prove that:
 - (A) $A \subset B \Rightarrow \overline{A} \subset \overline{B}$
 - (B) $A \subset B \Rightarrow A^0 \subset B^0$, where A^0 denotes the interior of A.
 - (C) If (X, T) is a topological space and A ⊂ X, then prove that A is open if and only if it is a neighbourhood of each of its points.

C-75

P. T. O.

[2]

(c) Define derived set and dense set with an example. Show that a subset A of a topological spaces X is dense in X if and only if for every non-empty open subset B of X, A ∩ B ≠ Φ.

Unit—II

- 2. (a) Define the following with an example:
 - (i) Continuous function
 - (ii) Homeomorphism
 - (iii) Separable space
 - (iv) Lindeloff space
 - (b) (i) If a topological space (X, T) is second countable, then prove that every open cover of it has a countable subcover.
 - (ii) Show that compositions of continuous functions are continuous.
 - (c) Define first countable space and show that first countability is a hereditary property.

Unit---III

- 3. (a) Define the following with an example:
 - (i) T₁-space
 - (ii) Regular space
 - (iii) Normal sapce
 - (iv) Completely regular space
 - (b) (i) Prove that every subspace of a T₂-space is a T₂-space.

- (ii) If X is a regular space, then prove that for any $x \in X$ and any open set G containing x there exists an open set H containing x such that $\overline{H} \subset G$.
- (c) (i) Show that every T_4 -space is a T_3 -space.
 - (ii) If X is a normal space, then prove that for any closed set C and any open set G containing C, there exists an open set H and a closed set K such that $C \subset H \subset K \subset G$.

Unit--IV

- 4. (a) (i) Show that every map from a compact space into a Hausdorff is closed.
 - Define the following with an example: (ii)
 - (A) Finite intersection property
 - (B) Compact space
 - Prove that a closed subspace of a compact space (i) (b) is compact.
 - Show that a continuous image of a sequentially (ii) compact set is sequentially compact.
 - Define locally compact space and prove that every (c) open subspace of a locally compact space is locally compact.

5. (a) Define countably compact space and prove that every countably compact metric space is second countable.

P. T. O. C-75

- Define connected space with an example and prove (b) that a subset of R is connected if and only if it is an interval.
- (i) Define the following with an example: (c)
 - (A) Separated sets
 - (B) Component
 - (ii) Define locally connected space. If E be a component in a locally connected space X, then prove that E is open in X.

entin aliantia.

900

Z-311

٠