U03C15

Y - 2224

B. Sc. (Part III) EXAMINATION, 2015

MATHEMATICS

(Optional)

Paper Third (E)

(Mathematical Modelling)

Time: Three Hours] { Max

{ Maximum Marks : 50

Note: Attempt any two parts from each question. Each part carries equal marks.

Unit-I

- 1. (a) For the differential and delay-difference equation model given below, verify the given equilibrium positions and characteristic equations $\frac{dN}{dt} = bN dN^2; \overline{N} = \frac{b}{d}; \lambda + b = 0.$
 - (b) Explain a model for growth of population inhibited by cumulative effect of population.
 - (c) Find the unique solution of the differential equation $\frac{dy}{dx} = 2x + 3\sqrt{x}$ whose graph passes through (4, 26).

P. T. O.

[2]

Unit-II

- 2. (a) Describe mathematical model for spread of technological innovations.
 - (b) Describe mathematical model for the effect of environmental pollution on forestry resources.
 - (c) Describe mathematical model for infectious diseases.

Unit—III

- 3. (a) Explain the Lanchester's combat model.
 - (b) Obtain the equation of continuity for traffic flow on a Highway.
 - (c) Discuss whether the velocity of propagation can be equal to the velocity of a car.

Unit-IV

- 4. (a) Describe Simple Epidemic model.
 - (b) Describe mathematical model for simple majority voting.
 - (c) Explain a Predator-Prey system with viral infection and anorexia response.

Unit-V

- 5. (a) Obtain mathematical model for pure birth process.
 - (b) Suppose the population of a city doubles its original size in 50 years and triples it in 100 years. Can the population be increasing at a rate proportional to the number present? Why?
 - (c) Explain the mathematical model for Urban waste water management planning.

Y-2224 4.200