Paper 1: CALCULUS & GEOMETRY-2016

Time: Three Hours]

[Maximum Marks: 50

http://www.prsunotes.com

Note: All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks.

UNIT - 1

1. (a) Let f: [a, b] → R be a bounded function and P is any partition of [a, b], then prove that:

 $L(p, f) \leq U(p, f)$

(b) Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Then show that for every $\in > 0$ there corresponds $\delta > 0$ such that :

$$U(p, f) < \int_{a}^{-b} f(x) dx + \epsilon$$
 and $L(p, f) > \int_{-a}^{b} f(x) dx - \epsilon$.

(c) Let $f \in \mathbb{R}$ [a, b] and let F be a differentiable function on [a, b] such that F'(x) = f(x) for all $x \in \{a, b\}$. Then show

that:
$$\int_a^b f(x) dx = F(b) - f(a)$$

UNIT - 2

- 2. (a) Discuss the maximum and minimum of the function : $f(x, y) = x^2 + y^2 + 6x + 12$
 - (b) In any triangle ABC, find the maximum value of cos A cos B cos C by Lagrange's method.
 - (c) Find the minimum value of $u = x^2 + y^2 + z^2$ having given ax + by + cz = p.

UNIT - 3

- 3. (a) To test the convergence of integral $\int_a^\infty \frac{dx}{x^n}$, where a > 0.
 - (b) Test for convergence of the integral:

$$\int_0^\infty \frac{dx}{\frac{1}{x^3} \left(1 + x^{\frac{1}{2}}\right)} \ .$$

(c) Test the convergence of the integral $\int_a^\infty \frac{\sin mx}{a^2 + x^2} dx$

UNIT - 4

4. (a) Find the equation of the cone whose vertex is (a, b, c)

and base curve
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $z = 0$.

- (b) Prove that the equation of the right circular cone whose vertex is the origin, axis is z-axis and semi vertical angle is α is $x^2 + y^2 = z^2 \tan^2 \alpha$.
- (c) Find the equation of right circular cylinder whose guiding circle is $x^2 + y^2 + z^2 = 9$, x y + z = 3.
- 5. (a) Explain the relation between Cartesian and Polar coordinates.
 - (b) In an ellipse $\frac{2}{r} = 1 e \cos \theta$ if PQ is a chord passing through focus S then prove that $\frac{1}{SP} + \frac{1}{SQ} = 1$.

nttp://www.prsunotes.com

(c) To find the polar equation of a conic with its latus rectum of length 2 *l*, eccentricity e and the focus being pole.

http://www.prsunotes.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रूपये पार्य, Paytm or Google Pay से