Paper 1: CALCULUS & GEOMETRY-2012

Note: Attempt any two parts from each question. All questions carry equal marks.

UNIT - 1

- (a) Let f: [a, b] → R is a bounded function in [a, b]. Then f is R-integrable if and only if for each ∈ > 0 there is a partition P such that : U(P, f) L(P, f) < ∈
 - (b) If f: [a, b] → R is a contituous function, then f is R-integrable in [a, b].
 - (c) Function f is defined on interval [0, 1] as f(x) = x∀x ∈ [0, http://www.prsunotes.com
 1). Divided [0, 1] into n equal parts and find ∫₀¹ xdx, ∫₀¹ xdx,

show that : $f \in \mathbb{R}[0, 1]$ and $\int_0^1 x dx = \frac{1}{2}$.

UNIT - 2

2. (a) Find maximum or minimum value of the function

$$x^3y^2(1-x-y).$$

(b) Find out the point inside the triangle, whose sum of the squares of the distances from vertices is minimum.

http://www.prsunotes.com

(c) Find minimum or maximum value of the function $u = x^2 + y^2 + z^2$ when $ax^2 + by^2 + cz^2 = 1$.

UNIT - 3

- 3. (a) Test for the convergent of the integral : $\int_{a}^{\infty} e^{-x} \frac{\sin x}{x^2} dx, a > 0$
 - (b) Prove that by using μ test $\int_1^0 \frac{dx}{\sqrt{x(1-x)}}$ is convergent.
 - (c) Show that $\int_9^{\pi/2} \log \sin x \, dx$ is convergent.

UNIT - 4

4. (a) Show that the following equation represents a cone and find co-ordinate of vertex:

$$4x^2 - y^2 + 2z^2 + 2xy - 3yz - 12x - 11y + 6z + 4 = 0$$

- (b) Find out the equation of right circular cone, whose vertex is origin and semivertical angle is 45°.
- (c) Find the equation of cylinder, whose generator is parallel

to line $x = -\frac{y}{2} = \frac{z}{3}$ and co-ordinate curve is the ellipse $x^2 + 2y^2 = \frac{1}{1}, z = \frac{3}{7}$.

http://www.prsunotes.com

UNIT - 5

- 5. (a) If PSP' is a focal cord of the conic $\frac{1}{r} = 1 + e \cos \theta$ where S be focus, then show that $: \frac{1}{SP} + \frac{1}{SP'} = \frac{2}{1}$
 - (b) Find the equation of the circle whose centre is at the point (4, 5) and which passes through the centre of the circle: $x^2 + y^2 + 4y 6x 12 = 0$
 - (c) In the conic $\frac{1}{r} = 1 + e \cos \theta$, there is two points, which are the direction angles α and β and these points are the end points f diameter. Prove that : $\tan \frac{\alpha}{2} \cdot \tan \frac{\beta}{2} = \frac{e+1}{e-1}$

http://www.prsunotes.com

http://www.prsunotes.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भन्ने और 10 रूपये पार्य, Paytm or Google Pay से