G-4013 M.Sc. FOURTH SEMESTER EXAMINATION 2014

MATHEMATICS Paper – I FUNCTIONAL ANALYSIS (II)

Time: 3 Hours

Max. Marks - 80

Note: Solve two parts from each question. Each question carries equal marks.

UNIT - I

- a State and prove open mapping theorem.
 - State and prove closed graph theorem.
 - c. Let $\{T_n\}$ be a sequence of continuous linear operators of Banach Space X into Banach Space Y such that $\lim_{n\to\infty}T_n(x)=T(x)$ exists for every $x\in X$. Then prove that T is continuous linear operator and $\|T\|\leq \lim_{n\to\infty}\inf\|T_n\|$.

UNIT - II

- a. Let X be a normed linear space over K and let S be a linear subspace of X.
 Suppose that z ∈ X and dist(z, X) = d > 0. Then Prove that ∃ g ∈ X*, such that g(s) = {0}, g(z) = d and ||g|| = 1. http://www.a2zsubjects.com
 - b. Prove that a Banach space is reflexive if and only if its dual space is reflexive.
 - c. Let X and Y be normed spaces over the field K and $T: X \to Y$, a bounded linear operator, then
 - (i) The adjoint T^* is bounded linear operator from Y^* to X^* i.e. $T^* \in B(Y^*, X^*)$.
 - (ii) $||T^*|| = ||T||$
 - (iii) The mapping $T \to T^*$ is an isometric isomorphism of B(X,Y) into $B(Y^*,X^*)$.

UNIT - III

- a. State and prove Cauchy-Schwartz inequality.
 - In an Inner product Space, prove that x and y are orthogonal vectors if and only if

 $||x + \alpha y|| = ||x - \alpha y||, \forall \alpha \in K.$

c. Let $\{e_{\alpha}\}_{\alpha \in \Lambda}$ be an orthonormal set in a Hilbert space H and $x \in H$, then prove that , $x - \sum \langle x, e_{\alpha} \rangle e_{\alpha} \perp e_{\beta}$ for each $\beta \in \Lambda$.

UNIT - IV

- 4. a. Let M be a closed subspace of a Hilberty Space H. Then prove that $H = M \oplus M^{\perp}$.
 - b. Let y be a fixed vector in Hilbert Space H and let f_y be a scalar defined by $f_y(x) = \langle x, y \rangle \ \forall \ x \in H$. Show that $f_y \in B(H, K)$. Further show that, ||y|| = ||fy||.
 - c. Let H_1 and H_2 be Hilbert Spaces. $T,S \in B(H_1,H_2)$ and $\alpha \in K$, then prove that :
 - i. $(T+S)^* = T^* + S^*$
 - ii. $(\alpha T)^* = \bar{\alpha} T^*$
 - iii. $(TS)^* = S^*T^*$
 - iv. $||T^*T|| = ||TT^*||$

UNIT - V

- 5. a. Let H be a complex Hilbert Space. Then prove that, every $T \in B(H)$, can be expressed uniquely as T = A + iB, where $A, B \in \mathcal{S}(H)$.
 - b. Define normal operators. Let $\aleph(H)$ be the set of all normal operators on H, then prove that:
 - i. $\aleph(H)$ is closed under scalar multiplication.
 - ii. ℵ(H) is a closed subset of B(H).
 - Define Unitary Operators. Let S and T be unitary operators on a Hilbert Space H, then prove that,
 - i. T is isometric
 - ii. T is Normal
 - iii. ST is Unitary
 - iv. T^{-1} is Unitary

* * *