Dali	No	***************************************
кон	NO.	*************************

X - 294

M. A./M. Sc. (First Semester) EXAMINATION, Dec., 2013

MATHEMATICS

Paper Fifth

(Advanced Discrete Mathematics—I)

Time: Three Hours [Maximum Marks: 80

Note: Solve any two parts from each question. All questions carry equal marks.

Unit---I

- - (b) Show that R ∧ (P ∨ Q) is a valid conclusion from the premises P ∨ Q, Q → R, P → M and ¬M.
 - (c) What are the Quantifiers? Explain universal quantifier and existential quantifier.

Unit-II

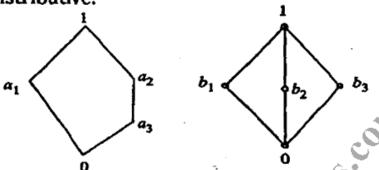
- (a) Define submonoid and prove that for any commutative monoid (M, *), the set of idempotent elements of M forms a submonoid.
 - (b) Define semigroup homomorphism and let X be a set containing n elements, let X* denote free semigroup

generated by X and let (S, \oplus) by any other semigroup generated by any n generators, then show that there exists a homomorphism $g: X^* \to S$.

(c) Let (S, *) be a given semigroup, then show that there exists a homomorphism g: S→ S^s, where (S^s,0) is a semigroup of functions from S to S under the operation of (left) composition.

Unit—III

3. (a) Define distributive lattice and show that the lattices given by the following diagrams in fig. (a) are not distributive.



- (b) Prove the De Morgan's law.
- (c) Define the following with example:
 - (i) Sublattice
 - (ii) Direct products
 - (iii) Boolean homomorphism
 - (iv) Complete lattice

Unit-IV

- 4. (a) Write the following Boolean expressions in an equivalent sum of products canonical form in three variables x_1, x_2 and x_3 :
 - (i) $x_1 * x_2$
 - (ii) $x_1 \oplus x_2$

(b) Use the Karnaugh map representation to find a minimal sum-of-product of the following function:

$$f = \Sigma (10, 12, 13, 14, 15)$$

(c) Define gates and draw the logical expression with inputs a, b and output f where:

$$f = (a+b) \cdot (\bar{a} + \bar{b})$$
Unit—V

- 5. (a) State and prove Pumping lemma.
 - (b) Define grammar and the language $L(G_3) = \{a^n b^n c^n \mid n \ge 1\}$ is generated by the following grammar:

$$G_3 = \langle \{S, B, C\}, \{a, b, c\}, S \phi \rangle$$

where ϕ consists of the productions

$$S \rightarrow a SBC$$

$$S \rightarrow aBC$$

$$bC \rightarrow bc$$

$$cC \rightarrow cc$$

Then find the derivation for the string $a^2 b^2 c^2$.

- (c) Define the following:
 - (i) Rewriting rules
 - (ii) Language generated by a grammar
 - (iii) Context-free grammar
 - (iv) Conversion of infix expressions

X-294

700