Ball	Nο	***************************************
NUII	IXU.	******************************

X - 292

M. A./M. Sc. (First Semester) EXAMINATION, Dec., 2013

MATHEMATICS

Paper Third

(Topology)

Time: Three Hours [Maximum Marks: 80

Note: Attempt one question from each Unit compulsorily. All questions carry equal marks.

Unit-I

- 1. (a) Define cardinal number with an example. Prove that the countable union of countable sets is countable.
 - (b) Find the closure of the set $\{2, \frac{3}{2}, \frac{4}{5}, \frac{5}{4}, \frac{6}{5}, \dots \}$. Prove that a subset A of a topological space is closed if and only if $\overline{A} = A$.
- (a) Show that a subspace of a topological space is itself a topological space.
 - (b) Define Cantor set. State and prove Cantor's theorem.

Unit--II

(a) Define Kuratowski space. Prove that every second countable is first countable.

- (b) Give an example of continuous function. Prove that Homeomorphism is an equivalence relation in the class of topological spaces.
- 4. (a) Show that the absolute value function in R is continuous.
 - (b) State and prove Lindelof's theorem.

Unit-III

- 5. (a) Define T₃-space. Prove that a closed subspace of a Normal space is Normal.
 - (b) Give an example of Hausdorff space. Show that every subspace of T_2 -space is a T_2 -space.
- 6. (a) Define regular space. Show that (R, U) is T_3 .
 - (b) Show that every regular Lindelof space is normal.

Unit—IV

- (a) Give an example of a compact Hausdorff space which is not connected. Prove that every closed subspace of a compact space is compact.
 - (b) Let (X*,T*) be a one point compactification of a non-compact topological space (X, T). Then prove that (X*,T*) is Hausdorff if and only if (X, T) is Hausdorff and locally compact.
- (a) Define sequentially compact with an example. Prove that any open subspace of a locally compact is locally compact.
 - (b) If A is an infinite subset of a compact space X then prove that A has limit point in X.

Unit-V

- 9. (a) Give an example of connected set. Prove that the set of real numbers with the usual topology is connected.
 - Prove that a topological space X is locally connected (b) if and only if the components of every open subspace of X are open in X.
- Prove that a metric space is compact if and only if it 10. (a) is complete and totally bounded.
 - Give an example of separated set. Let $\{C_{\lambda} : \lambda \in \Lambda\}$ be (b) a family of connected sets of a topological space having a non-empty intersection. Show that $U\{C_{\lambda}:\lambda\in\Lambda\}$ is connected.

ALISTO PROPERTY OF THE PROPERT

X-292