Rali	No.	
ron	110.	**********************

Z - 309

M. A./M. Sc. (First Semester) EXAMINATION, Dec., 2015

MATHEMATICS

Paper First

(Advanced Abstract Algebra—I)

Time: Three Hours] [Maximum Marks: 80

[Minimum Pass Marks: 16

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Define p-group and show that if a cyclic group has one and only one composition series, then it is a p-group.
 - (b) Define solvable group with example and show that if A and B are two solvable groups, then this product A × B is also solvable.
 - (c) Show that every nilpotent group is solvable.

Unit-II

 (a) If E is an extension of a filed F then show that F (u) is an algebraic extension of F where u ∈ E is algebraic over F.

Z = 309

- State and prove the theorem of uniqueness of splitting (b) field.
- Prove that: (c)

$$Q\left(\sqrt{2},\sqrt{3}\right) = Q\left(\sqrt{2} + \sqrt{3}\right)$$

Unit--III

- 3. (a) Show that any two finite fields with p^n elements are isomorphic.
 - (b) Show that $K \cong K'$ where K and K' are algebraic closures of a field F.
 - Show that the product of two primitive polynomials is (c) also primitive.

Unit-IV

- 4. (a) Define Galois group and show that the group G (Q(α)/Q), where $\alpha^5 = 1$ and $\alpha \neq 1$ is isomorphic to the cyclic group of order 4.
 - Show that k is normal extension of F_k iff G (E/K) is. (b) normal subgroup of G (E/F) where E is Galois extension of F and K is any subfield of E containing F.
 - Find the Galois groups G (K/Q) of the following (c) extensions K of Q:

(i)
$$K = Q(\sqrt{3}, \sqrt{5})$$

extensions K of Q:
(i)
$$K = Q(\sqrt{3}, \sqrt{5})$$

(ii) $K = Q(\alpha)$, where $\alpha = e^{i\frac{2\pi}{3}}$
Unit—V

5. (a) Prove that $f(x) \in F[x]$ is solvable by radicals over F iff its splitting field E over F has solvable Galois group G (E/F).

٠

(b) Test the solvability by radicals over Q for the following polynomials:

(i)
$$2x^5 - 5x^4 + 5$$

(ii)
$$x^3 - 9x + 3$$

(c) Let f(x) ∈ Q[x] be a monic irreducible polynomial over Q of degree p (prime). If f(x) has exactly two non-real roots in C, then show that the Galois group of f(x) is isomorphic to S_p.

Z-309 900